Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain.

نویسندگان

  • Dimitrios Spiliotopoulos
  • Jian Zhu
  • Eike-Christian Wamhoff
  • Nicholas Deerain
  • Jean-Rémy Marchand
  • Jonas Aretz
  • Christoph Rademacher
  • Amedeo Caflisch
چکیده

Overexpression of the CREB-binding protein (CBP), a bromodomain-containing transcription coactivator involved in a variety of cellular processes, has been observed in several types of cancer with a correlation to aggressiveness. We have screened a library of nearly 1500 fragments by high-throughput docking into the CBP bromodomain followed by binding energy evaluation using a force field with electrostatic solvation. Twenty of the 39 fragments selected by virtual screening are positive in one or more ligand-observed nuclear magnetic resonance (NMR) experiments. Four crystal structures of the CBP bromodomain in complex with in silico screening hits validate the pose predicted by docking. Thus, the success ratio of the high-throughput docking procedure is 50% or 10% if one considers the validation by ligand-observed NMR spectroscopy or X-ray crystallography, respectively. Compounds 1 and 3 show favorable ligand efficiency in two different in vitro binding assays. The structure of the CBP bromodomain in the complex with the brominated pyrrole 1 suggests fragment growing by Suzuki coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragment-Based Screening of the Bromodomain of ATAD2

Cellular and genetic evidence suggest that inhibition of ATAD2 could be a useful strategy to treat several types of cancer. To discover small-molecule inhibitors of the bromodomain of ATAD2, we used a fragment-based approach. Fragment hits were identified using NMR spectroscopy, and ATAD2 was crystallized with three of the hits identified in the fragment screen.

متن کامل

“Fragment-Based Drug Design of Bromodomain Ligands”

Epigenetic mechnisms are essential for normal development and alterations of epigenetic processe are correlated with many human diseases, e.g., cancer. One of the important epigenetic modifications, acetylation of lysine, is mainly recognized by structurally conserved protein module bromodomains. Targeting bromodomains by small molecules is an emerging therapeutic strategy for cancer treatment....

متن کامل

Fragment-based in silico screening of bromodomain ligands.

We review the results of fragment-based high-throughput docking to the N-terminal bromodomain of BRD4 and the CREBBP bromodomain. In both docking campaigns the ALTA (anchor-based library tailoring) procedure was used to reduce the size of the initial library by selecting for flexible docking only the molecules that contain a fragment with favorable predicted binding energy. Ranking by a force f...

متن کامل

Increasing Chemical Space Coverage by Combining Empirical and Computational Fragment Screens

Most libraries for fragment-based drug discovery are restricted to 1,000-10,000 compounds, but over 500,000 fragments are commercially available and potentially accessible by virtual screening. Whether this larger set would increase chemotype coverage, and whether a computational screen can pragmatically prioritize them, is debated. To investigate this question, a 1281-fragment library was scre...

متن کامل

NMR-Fragment Based Virtual Screening: A Brief Overview.

Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry letters

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2017